Rare variant analysis of blood pressure phenotypes in the Genetic Analysis Workshop 18 whole genome sequencing data using sequence kernel association test

نویسندگان

  • Cates Mallaney
  • Yun Ju Sung
چکیده

Sequence kernel association test (SKAT) has become one of the most commonly used nonburden tests for analyzing rare variants. Performance of burden tests depends on the weighting of rare and common variants when collapsing them in a genomic region. Using the systolic and diastolic blood pressure phenotypes of 142 unrelated individuals in the Genetic Analysis Workshop 18 data, we investigated whether performance of SKAT also depends on the weighting scheme. We analyzed the entire sequencing data for all 200 replications using 3 weighting schemes: equal weighting, Madsen-Browning weighting, and SKAT default linear weighting. We considered two options: all single-nucleotide polymorphisms (SNPs) and only low-frequency SNPs. A SKAT default weighting scheme (which heavily downweights common variants) performed better for the genes in which causal SNPs are mostly rare. This SKAT default weighting scheme behaved similarly to other weighting schemes after eliminating all common SNPs. In contrast, the equal weighting scheme performed the best for MAP4 and FLT3, both of which included a common variant with a large effect. However, SKAT with all 3 weighting schemes performed poorly. Overall power across all causal genes was about 0.05, which was almost identical to the type I error rate. This poor performance is partly due to a small sample size because of the need to analyze only unrelated individuals. Because a half of causal SNPs were not found in the annotation file based on the 1000 Genomes Project, we suspect that performance was also affected by our use of incomplete annotation information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative analysis of family-based and population-based association tests using whole genome sequence data

The revolution in next-generation sequencing has made obtaining both common and rare high-quality sequence variants across the entire genome feasible. Because researchers are now faced with the analytical challenges of handling a massive amount of genetic variant information from sequencing studies, numerous methods have been developed to assess the impact of both common and rare variants on di...

متن کامل

Higher criticism approach to detect rare variants using whole genome sequencing data

Because of low statistical power of single-variant tests for whole genome sequencing (WGS) data, the association test for variant groups is a key approach for genetic mapping. To address the features of sparse and weak genetic effects to be detected, the higher criticism (HC) approach has been proposed and theoretically has proven optimal for detecting sparse and weak genetic effects. Here we d...

متن کامل

Rare genetic variant analysis on blood pressure in related samples

The genetic variants associated with blood pressure identified so far explain only a small proportion of the total heritability of this trait. With recent advances in sequencing technology and statistical methodology, it becomes feasible to study the association between blood pressure and rare genetic variants. Using real baseline phenotype data and imputed dosage data from Genetic Analysis Wor...

متن کامل

Incorporating ENCODE information into association analysis of whole genome sequencing data

With the rapidly decreasing cost of the next-generation sequencing technology, a large number of whole genome sequences have been generated, enabling researchers to survey rare variants in the protein-coding and regulatory regions of the genome. However, it remains a daunting task to identify functional variants associated with complex diseases from whole genome sequencing (WGS) data because of...

متن کامل

Rare-variant association testing for sequencing data with the sequence kernel association test.

Sequencing studies are increasingly being conducted to identify rare variants associated with complex traits. The limited power of classical single-marker association analysis for rare variants poses a central challenge in such studies. We propose the sequence kernel association test (SKAT), a supervised, flexible, computationally efficient regression method to test for association between gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014